Dem Lichtbogen keine Chance (2024)

Startseite > E-Mechanik+Passive > Relais > Dem Lichtbogen keine Chance

Relais für hohe Gleichströme

22. November 2018, 9:00 Uhr | Dirk Wortmann, Phoenix Contact

Dem Lichtbogen keine Chance (1) Dem Lichtbogen keine Chance (2)

In industriellen Bereichen kommen zum Schalten von Verbrauchern elektromechanische oder halbleiter-basierte Relais zum Einsatz. Sind Gleichstromlasten mit höherer Spannung und oft zugleich höherer Leistung zu schalten, erweisen sich Standardrelais als ungeeignet und fallen oftmals schnell aus.

Anwendungen, bei denen höhere Gleichspannungslasten zu schalten sind, finden sich in den verschiedensten Industriebranchen. In vielen dieser Einsatzbereiche kommen sie häufig vor und sind den Entwicklungsingenieuren respektive Planungsbüros daher geläufig. Als Beispiele seien Kraftfahrzeuge mit Elektroantrieb bis 800V, Batteriespannungen auf Zügen mit landesspezifischen 72V, 96V oder 110V sowie Photovoltaikanlagen bis 1000V genannt. Aufgrund der jeweils besonderen Schaltanforderungen bei gleichzeitig hohem Strom haben die Relaishersteller für derartige Applikationen spezielle Relais entwickelt (Bild1). Die Geräte lassen sich allerdings meist nicht in den Schaltschrank­anwendungen der Automatisierungstechnik nutzen.

In der industriellen Automatisierungstechnik herrschen in den Schaltschränken bekanntermaßen die klassischen Steuerspannungen 24V Gleich- und 230V Wechselspannung sowie die Drehstromsysteme überwiegend für elektrische Antriebe vor. Doch auch hier gibt es bei genauerem Hinsehen Gleichspannungssysteme über 100V, die üblicherweise als batteriebasierte Notstromversorgungen bei einem Ausfall der Netzspannung dienen. Entsprechende Lösungen kommen unter anderem in Serverfarmen und Rechenzentren, auf Flughäfen, in der chemischen Industrie und der Verfahrenstechnik sowie in Kraftwerksanlagen zum Einsatz. Exemplarisch wollen wir im Folgenden näher auf den Anwendungsfall im Kraftwerk eingehen.

Dem Lichtbogen keine Chance (3)

Um selbst im Fehlerfall den unterbrechungsfreien Betrieb sicherzustellen, verfügen Kraftwerke über Notstromgeneratoren. Fallen diese ebenfalls aus, müssen große Batterieanlagen den Notbetrieb wichtiger Aggregate über eine gewisse Zeit aufrechterhalten. In Europa sind in derartigen Applikationen vorzugsweise 220-V-Batteriesysteme verbaut, während weltweit ebenso 110-V- und 125-V-Lösungen Verwendung finden. Um die sehr hohe benötigte Leistung liefern zu können, ist eine erhebliche Anzahl von Einzelzellen in Reihe sowie parallel zu einer großen Batterieanlage verschaltet. Zahlreiche leittechnische Verbraucher nutzen die Gleichspannung aus diesen Batterien unmittelbar, darunter auch viele Schaltgeräte wie Schütze und Koppelrelais, die praktischerweise im Schaltschrank auf genormten DIN-Tragschienen aufgerastet werden. Die Versorgung von Drehstromverbrauchern aus den Batterien – beispielsweise Pumpen – erfolgt dagegen indirekt über rotierende Umformer oder Umrichter.

Warum Relais ausfallen

Warum fallen die oftmals aus Unwissenheit in derartigen Applikationen installierten Standard-Koppelrelais – wie eingangs beschrieben – schon nach kurzer Zeit aus? Die Antwort ergibt sich aus dem komplett unterschiedlichen Verhalten von Koppelrelais beim Schalten von AC- und DC-Spannung. Nahezu alle heute angebotenen Standard-Koppelrelais weisen Kontaktabstände von etwa 0,3mm bis 0,4mm auf. Diese Distanz reicht problemlos, um AC-Lasten bis 230V selbst bei höherem Strom abzuschalten. Nach spätestens einer Halbwelle kommutiert die sinusförmige Netzspannung und wechselt das Vorzeichen. Beim Nulldurchgang der Spannung verlöscht der eventuell beim Abschalten entstandene Lichtbogen von selbst.

Dem Lichtbogen keine Chance (4)

Bei Gleichspannung kommutiert die Spannung logischerweise nicht, weshalb der maximal zulässige Schaltstrom insbesondere bei höherer Schaltspannung drastisch sinkt. Das AC- und DC-Schaltverhalten wird häufig in Graphen dargestellt, wobei diese als Lastgrenzkurven bezeichnet werden (Bild2).

Anwendern ist das unterschiedliche Verhalten der Relais oft nicht bewusst, denn bei den in der Automatisierungstechnik weit verbreiteten Spannungen von 24V (DC) und 230V (AC) zeigt sich der abschaltbare Strom – wie beim Graph in Bild2 – als völlig identisch: hier im Beispiel des 10-A-Koppelrelais eben 10A. Bei einer Applikation, bei der die zu schaltende Gleichspannung erheblich höher ist – beispielsweise 220V –, kann das 10-A-Koppelrelais lediglich 0,3A abschalten. Vor diesem Hintergrund kommt es immer wieder zu Fehlanwendungen, die teilweise bereits beim ersten Schaltspiel zu einem Totalausfall der Standard-Koppelrelais führen.

Lichtbogen bei einem Relais

Alle Bilder anzeigen (3)

Die Bildfolge in Bild3 visualisiert, was passiert, wenn sich die Last – in diesem Fall 1A bei 220V (DC) – deutlich oberhalb der DC-Lastgrenzkurve gemäß dem Graph in Bild2 befindet. Dies soll unterstreichen, dass herkömmliche Koppelrelais mit dem Abschalten höherer DC-Lasten überfordert sind. Die Automatisierungstechnik benötigt also Speziallösungen.

  1. Dem Lichtbogen keine Chance
  2. Magnetische und elektronische Lösung

Lesen Sie mehr zum Thema

Phoenix Contact Electronics GmbH Relais

Das könnte Sie auch interessieren

Automotive / Power-Management MOSFET statt Relais Industriestandard Hat das Würfel-Relais eine Zukunft? Phoenix Contact / Industrie 4.0 Safety trifft auf Security Teils steigende Lieferzeiten bei Relais »Starker Zuwachs der Nachfrage« Standex-Meder Sicher getrennt durch Reed-Relais Elektromechanisches und Halbleiterrelais Symbiotische Verbindung Kontaktmaterialien für Leistungsrelais Gold oder nicht Gold? Überwachung von Steuerungssystemen Relais in Sicherheitsschaltungen
Dem Lichtbogen keine Chance (9)

Weitere Artikel zu Phoenix Contact Electronics GmbH

Bilderstrecke Spannende Neuheiten aus der Optoelektronik Führende Köpfe der Elektronikbranche embedded world - alle Videos der VIP-Bühne 2024 Anwendungen effizient entwickeln Profinet-IRT-Kommunikation mit dem TPS-1-Chip Automation nach IEC 62443 als Basis EU-Richtlinie NIS 2 in der Praxis Qualifizierung Mit Testwerkzeugen schneller zu TSN-fähigen…

Weitere Artikel zu Relais

Sanyous neue Smart Fab Eine neue Ära in der Relaisfertigung! Neue Maßstäbe für DC-Netze DC-Circuit-Breaker von Schaltbau schaltet… Toshiba Electronics Europe New photorelays for semiconductor test… Weidmüller Universalrelais, vibrationsfest und ultrakompakt Miniaturisierung macht's möglich Erstes Miniatur-SIP-Relais mit 5…
Dem Lichtbogen keine Chance (2024)

References

Top Articles
Latest Posts
Article information

Author: Lidia Grady

Last Updated:

Views: 6545

Rating: 4.4 / 5 (65 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Lidia Grady

Birthday: 1992-01-22

Address: Suite 493 356 Dale Fall, New Wanda, RI 52485

Phone: +29914464387516

Job: Customer Engineer

Hobby: Cryptography, Writing, Dowsing, Stand-up comedy, Calligraphy, Web surfing, Ghost hunting

Introduction: My name is Lidia Grady, I am a thankful, fine, glamorous, lucky, lively, pleasant, shiny person who loves writing and wants to share my knowledge and understanding with you.